A Tale of Two Bases: Local-Nonlocal Regularization on Image Patches with Convolution Framelets

نویسندگان

  • Rujie Yin
  • Tingran Gao
  • Yue Lu
  • Ingrid Daubechies
چکیده

We propose an image representation scheme combining the local and nonlocal characterization of patches in an image. Our representation scheme can be shown to be equivalent to a tight frame constructed from convolving local bases (e.g., wavelet frames, discrete cosine transforms, etc.) with nonlocal bases (e.g., spectral basis induced by nonlinear dimension reduction on patches), and we call the resulting frame elements convolution framelets. Insight gained from analyzing the proposed representation leads to a novel interpretation of a recent high-performance patch-based image processing algorithm using the point integral method (PIM) and the low dimensional manifold model (LDMM) [S. Osher, Z. Shi, and W. Zhu, Low Dimensional Manifold Model for Image Processing, Tech. Rep., CAM report 16-04, UCLA, Los Angeles, CA, 2016]. In particular, we show that LDMM is a weighted `2-regularization on the coefficients obtained by decomposing images into linear combinations of convolution framelets; based on this understanding, we extend the original LDMM to a reweighted version that yields further improved results. In addition, we establish the energy concentration property of convolution framelet coefficients for the setting where the local basis is constructed from a given nonlocal basis via a linear reconstruction framework; a generalization of this framework to unions of local embeddings can provide a natural setting for interpreting BM3D, one of the state-of-the-art image denoising algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularization on Image Patches: a linear reconstruction from manifold embedding

We propose an image representation scheme combining the local and nonlocal characterization of patches in an image. Our representation scheme can be shown to be equivalent to a tight frame constructed from convolving local bases (e.g. wavelet frames, discrete cosine transforms, etc.) with nonlocal bases (e.g. spectral basis induced by nonlinear dimension reduction on patches), and we call the r...

متن کامل

Deep Convolutional Framelets: A General Deep Learning for Inverse Problems

Recently, deep learning approaches with various network architectures have achieved significant performance improvement over existing iterative reconstruction methods in various imaging problems. However, it is still unclear why these deep learning architectures work for specific inverse problems. Moreover, in contrast to the usual evolution of signal processing theory around the classical theo...

متن کامل

Weighted Schatten $p$-Norm Minimization for Image Denoising with Local and Nonlocal Regularization

This paper presents a patch-wise low-rank based image denoising method with constrained variational model involving local and nonlocal regularization. On one hand, recent patch-wise methods can be represented as a low-rank matrix approximation problem whose convex relaxation usually depends on nuclear norm minimization (NNM). Here, we extend the NNM to the nonconvex schatten p-norm minimization...

متن کامل

Robust Fuzzy Content Based Regularization Technique in Super Resolution Imaging

Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...

متن کامل

Image Processing with Nonlocal Spectral Bases

This article studies regularization schemes that are defined using a lifting of the image pixels in a high dimensional space. For some specific classes of geometric images, this discrete set of points is sampled along a low dimensional smooth manifold. The construction of differential operators on this lifted space allows one to compute PDE flows and perform variational optimizations. All these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Imaging Sciences

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017